【题目】已知项数为项的有穷数列,若同时满足以下三个条件:
,为正整数;或1,其中,3,,;
任取数列中的两项,,剩下的项中一定存在两项,,满足,则称数列为数列.
若数列是首项为1,公差为1,项数为6项的等差数列,判断数列是否是数列,并说明理由.
当时,设数列中1出现次,2出现次,3出现次,其中,,.
求证:,,;
当时,求数列中项数的最小值.
【题目】已知椭圆 的长轴长为4,焦距为
(Ⅰ)求椭圆的方程;
(Ⅱ)过动点的直线交轴与点,交于点 (在第一象限),且是线段的中点.过点作轴的垂线交于另一点,延长交于点.
(ⅰ)设直线的斜率分别为,证明为定值;
(ⅱ)求直线的斜率的最小值.
【题目】已知点,及圆.
(1)求过点的圆的切线方程;
(2)若过点的直线与圆相交,截得的弦长为,求直线的方程.
【题目】在平面直角坐标系xOy中,双曲线:经过点,其中一条近线的方程为,椭圆:与双曲线有相同的焦点椭圆的左焦点,左顶点和上顶点分别为F,A,B,且点F到直线AB的距离为.
求双曲线的方程;
求椭圆的方程.
【题目】已知△ABC中,B(-1,0),C(1,0),AB=6,点P在AB上,且∠BAC=∠PCA.
(1)求点P的轨迹E的方程;
(2)若,过点C的直线与E交于M,N两点,与直线x=9交于点K,记QM,QN,QK的斜率分别为k1,k2,k3,试探究k1,k2,k3的关系,并证明.
【题目】已知椭圆:的长轴长为,右顶点到左焦点的距离为,直线l:与椭圆交于A,B两点.
求椭圆的方程;
若A为椭圆的上项点,M为AB中点,O为坐标原点,连接OM并延长交椭圆于N,,求k的值.
若原点O到直线l的距离为1,,当时,求的面积S的范围.
【题目】我国的“洋垃极禁止入境”政策已实施一年多某沿海地区的海岸线为一段圆弧AB,对应的圆心角,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD对不明船只进行识别查证如图:其中海域与陆地近似看作在同一平面内在圆弧的两端点A,B分别建有监测站,A与B之间的直线距离为100海里.
求海域ABCD的面积;
现海上P点处有一艘不明船只,在A点测得其距A点40海里,在B点测得其距B点海里判断这艘不明船只是否进入了海域ABCD?请说明理由.
【题目】如图所示,曲线C由部分椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1所在椭圆的离心率为.
(1)求a,b的值;
(2)过点B的直线l与C1,C2分别交于点P,Q(P,Q,A,B中任意两点均不重合),若AP⊥AQ,求直线l
的方程.
【题目】如图,已知正方体的棱长为1.
正方体中哪些棱所在的直线与直线是异面直线?
若M,N分别是 ,的中点,求异面直线MN与BC所成角的大小.
【题目】设命题p:函数f(x)=lg(ax2-x+16a)的定义域为R;命题q:不等式3x-9x<a对任意x∈R恒成立.
(1)如果p是真命题,求实数a的取值范围;
(2)如果命题“p或q”为真命题且“p且q”为假命题,求实数a的取值范围.