【题目】如图,游客从某旅游景区的景点处下上至处有两种路径.一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到,假设缆车匀速直线运动的速度为,山路长为1260,经测量,.
(1)求索道的长;
(2)问:乙出发多少后,乙在缆车上与甲的距离最短?
(3)为使两位游客在处互相等待的时间不超过,乙步行的速度应控制在什么范围内?
【题目】将高二(1)班的四个同学分到语文、数学、英语三个兴趣小组,每个兴趣小组至少有一名同学的分配方法有多少种?下列结论正确的有( )
A.B.
C.D.18
【题目】学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在1次游戏中,
①摸出3个白球的概率;
②获奖的概率;
(2)求在2次游戏中获奖次数的分布列.
【题目】若α是第一象限角,则sinα+cosα的值与1的大小关系是( )
A. sinα+cosα>1B. sinα+cosα=1C. sinα+cosα<1D. 不能确定
【题目】某高三年级学生为了庆祝教师节,同学们为老师制作了一大批同一种规格的手工艺品,这种工艺品有两项技术指标需要检测,设各项技术指标达标与否互不影响,若项技术指标达标的概率为项技术指标达标的概率为,按质量检验规定:两项技术指标都达标的工艺品为合格品.
(1)求一个工艺品经过检测至少一项技术指标达标的概率;
(2)任意依次抽取该工艺品4个,设表示其中合格品的个数,求的分布列.
【题目】过椭圆W:的左焦点作直线交椭圆于两点,其中 ,另一条过的直线交椭圆于两点(不与重合),且点不与点重合.过作轴的垂线分别交直线,于,.
(Ⅰ)求点坐标和直线的方程;
(Ⅱ)求证:.
【题目】 据观测统计,某湿地公园某种珍稀鸟类的现有个数约只,并以平均每年的速度增加.
(1)求两年后这种珍稀鸟类的大约个数;
(2)写出(珍稀鸟类的个数)关于(经过的年数)的函数关系式;
(3)约经过多少年以后,这种鸟类的个数达到现有个数的倍或以上?(结果为整数)(参考数据:,)
【题目】如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点.
(1)求证:AC ⊥BC1;
(2)求证:AC 1 // 平面CDB1;
(3)(3)求三棱锥的体积.
【题目】如图,某中学甲、乙两班共有25名学生报名参加了一项 测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.
(Ⅰ)求这两个班学生成绩的中位数及x的值;
(Ⅱ)如果将这些成绩分为“优秀”(得分在175分 以上,包括175分)和“过关”,若学校再从这两个班获得“优秀”成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.
【题目】(1)解不等式:;
(2)已知a-5x>ax+7(a>0,且a≠1),求x的取值范围.