10.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤10成立,则称f(x)和g(x)在[a,b]上是“密切函数”,[a,b]称为“密切区间”,若f(x)=x3-2x+7,g(x)=x+m在[2,3]上是“密切函数”,则实数m的取值范围是( )
A. | [15,+∞) | B. | (-∞,19] | C. | (15,19) | D. | [15,19] |
9.设函数f(x)=xm+ax(m,a为常数)的导数为f′(x)=2x+1,则数列{$\frac{f(n)}{n•{2}^{n}}$}(n∈N*)的前n项和为( )
A. | 3-$\frac{n+3}{{2}^{n}}$ | B. | 3-$\frac{n+2}{{2}^{n}}$ | C. | 3+$\frac{n-1}{{2}^{n}}$ | D. | $\frac{3}{2}$-$\frac{n+1}{{2}^{n+1}}$ |
8.已知函数f(x)=$\frac{1}{3}$sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为π,则f(x)的图象( )
A. | 关于直线x=$\frac{π}{4}$对称 | B. | 关于点($\frac{π}{4}$,0)对称 | ||
C. | 关于直线x=$\frac{π}{3}$对称 | D. | 关于点($\frac{π}{3}$,0)对称 |
7.△ABC中,角A、B、C的对边分别为a,b,c,设△ABC的面积为S,S=$\frac{\sqrt{3}}{12}$(c2-a2-b2),则角C等于( )
A. | $\frac{π}{6}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
6.已知函数f(x)是定义在区间[-a,a]上的奇函数,若g(x)=f(x)+2,则g(x)的最大值与最小值之和为( )
A. | 0 | B. | 2 | C. | 4 | D. | 不能确定 |
5.要得到函数y=cos(2x+π)的图象,只需将函数y=cosx的图象( )
0 252085 252093 252099 252103 252109 252111 252115 252121 252123 252129 252135 252139 252141 252145 252151 252153 252159 252163 252165 252169 252171 252175 252177 252179 252180 252181 252183 252184 252185 252187 252189 252193 252195 252199 252201 252205 252211 252213 252219 252223 252225 252229 252235 252241 252243 252249 252253 252255 252261 252265 252271 252279 266669
A. | 向左平移π个单位,要把所有点的横坐标伸长到原来的2倍,纵坐标不变 | |
B. | 向右平移π个单位,要把所有点的横坐标伸长到原来的2倍,纵坐标不变 | |
C. | 向左平移π个单位,要把所有点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变 | |
D. | 向右平移π个单位,要把所有点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变 |