1.某港口海水的深度y(米)是时间t(小时)(0≤t≤24)的函数,记为y=f(t)
已知某日海水深度的数据如下:
经长期观察,y=f(t)的曲线可近似地看成函数y=Asinωt+b,ω>0的图象.
(1)试根据以上数据,画出函数y=f(t),t∈[0,24]的图象;
(2)写出函数y=Asinωt+b的近似振幅、最小正周期和表达式;
(3)一般情况下,船舶航行时,船底的距离为4米或4米以上时认为是安全的(船舶)停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为5.5米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(船进出港所需时间忽略不计)?
已知某日海水深度的数据如下:
t(小时) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 8.0 | 11.0 | 7.9 | 5.0 | 8.0 | 11.0 | 8.1 | 5.0 | 8.0 |
(1)试根据以上数据,画出函数y=f(t),t∈[0,24]的图象;
(2)写出函数y=Asinωt+b的近似振幅、最小正周期和表达式;
(3)一般情况下,船舶航行时,船底的距离为4米或4米以上时认为是安全的(船舶)停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为5.5米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(船进出港所需时间忽略不计)?
17.函数y=sin(x-$\frac{π}{3}$)的一个递增区间是( )
A. | [-$\frac{5π}{6}$,$\frac{π}{6}$] | B. | [-$\frac{π}{6}$,$\frac{5π}{6}$] | C. | [-$\frac{π}{2}$,$\frac{π}{2}$] | D. | [-$\frac{π}{3}$,$\frac{2π}{3}$] |
15.下列有关命题的说法错误的是( )
A. | 命题“若x2-1=0,则x=1”的逆否命题为:“若x≠1则x2-1≠0” | |
B. | “x=1”是“x2-3x+2=0”的充分不必要条件 | |
C. | 若p∧q为假命题,则p、q均为假命题 | |
D. | 对于命题p:?x∈R使得x2+x+1<0,则?p:?x∈R均有x2+x+1≥0 |
14.若数列{an}是等差数列,首项a1>0,a2003+a2004>0,a2003•a2004<0,则使前n项和Sn>0成立的最大自然数n是 ( )
A. | 4 005 | B. | 4 006 | C. | 4 007 | D. | 4 008 |
13.不可以作为数列:2,0,2,0,…,的通项公式的是( )
0 250316 250324 250330 250334 250340 250342 250346 250352 250354 250360 250366 250370 250372 250376 250382 250384 250390 250394 250396 250400 250402 250406 250408 250410 250411 250412 250414 250415 250416 250418 250420 250424 250426 250430 250432 250436 250442 250444 250450 250454 250456 250460 250466 250472 250474 250480 250484 250486 250492 250496 250502 250510 266669
A. | ${a_n}=\left\{\begin{array}{l}2(n=2k-1,k∈{N^+})\\ 0(n=2k,k∈{N^+})\end{array}\right.$ | B. | ${a_n}=2|{sin\frac{nπ}{2}}|$ | ||
C. | ${a_n}={(-1)^n}+1$ | D. | ${a_n}=2|{cos\frac{(n-1)π}{2}}|$ |