1.在△ABC中,a=2,b=3,sinA=$\frac{1}{2}$,则cosB的值是( )
A. | $\frac{{\sqrt{7}}}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | ±$\frac{{\sqrt{7}}}{4}$ |
20.设集合P={1,2,3,4},Q={x|x2-x-2<0,x∈R},则P∩Q=( )
A. | {1,2} | B. | {3,4} | C. | {1} | D. | {-2,-1,0,1,2} |
15.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于-1,另一个大于1,那么实数m的取值范围是( )
A. | -$\sqrt{2}$<m<$\sqrt{2}$ | B. | -2<m<0 | C. | -2<m<1 | D. | 0<m<1 |
13.函数y=3sin(2x+$\frac{π}{3}$)的图象可以看作是把函数y=3sin2x的图象作下列移动而得到( )
A. | 向左平移$\frac{π}{3}$单位 | B. | 向右平移$\frac{π}{3}$单位 | C. | 向左平移$\frac{π}{6}$单位 | D. | 向右平移$\frac{π}{6}$单位 |
12.某班40个学生平均分成两组,两组学生某次考试的成绩情况如下表所示:
求这次考试全班的平均成绩和标准差.( 注:平均数$\overline{x}=\frac{{{x_1}+{x_2}+…+{x_n}}}{n}$,
标准差$s=\sqrt{\frac{1}{n}[{({x_1}-{{\overline{x)}}^2}+{{({x_2}-\bar\overline{x})}^2}+…+{{({x_n}-\bar\overline{x})}^2}}]}=\sqrt{\frac{1}{n}[{(x_1^2+x_2^2+…+x_n^2)-n{{\bar\overline{x}}^2}}]}$)
0 248422 248430 248436 248440 248446 248448 248452 248458 248460 248466 248472 248476 248478 248482 248488 248490 248496 248500 248502 248506 248508 248512 248514 248516 248517 248518 248520 248521 248522 248524 248526 248530 248532 248536 248538 248542 248548 248550 248556 248560 248562 248566 248572 248578 248580 248586 248590 248592 248598 248602 248608 248616 266669
组别 | 平均数 | 标准差 |
第一组 | 90 | 4 |
第二组 | 80 | 6 |
标准差$s=\sqrt{\frac{1}{n}[{({x_1}-{{\overline{x)}}^2}+{{({x_2}-\bar\overline{x})}^2}+…+{{({x_n}-\bar\overline{x})}^2}}]}=\sqrt{\frac{1}{n}[{(x_1^2+x_2^2+…+x_n^2)-n{{\bar\overline{x}}^2}}]}$)