4.{an}是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( )
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
3.某地区2006年至2012年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2006年至2012年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2014年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({t_i}-\overline t)}^2}}}}$.$\widehata=\overline y-\widehatb\overline t$.
0 248154 248162 248168 248172 248178 248180 248184 248190 248192 248198 248204 248208 248210 248214 248220 248222 248228 248232 248234 248238 248240 248244 248246 248248 248249 248250 248252 248253 248254 248256 248258 248262 248264 248268 248270 248274 248280 248282 248288 248292 248294 248298 248304 248310 248312 248318 248322 248324 248330 248334 248340 248348 266669
年份 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅱ)利用(Ⅰ)中的回归方程,分析2006年至2012年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2014年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({t_i}-\overline t)}^2}}}}$.$\widehata=\overline y-\widehatb\overline t$.