10.某班同学利用春节进行社会实践,对本地[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图.
(一)人数统计表:
(二)各年龄段人数频率分布直方图:
(Ⅰ)在答题卡给定的坐标系中补全频率分布直方图,并求出n、p、a的值;
(Ⅱ)从[40,50]岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动.若将这6个人通过抽签分成甲、乙两组,每组的人数相同,求[45,50]岁中被抽取的人恰好又分在同一组的概率;
(Ⅲ)根据所得各年龄段人数频率分布直方图,估计在本地[25,55]岁的人群中“低碳族”年龄的中位数.
序号 | 分组 | 本组“低碳族”的人数 | “低碳族”人数在本组中所占的比例 |
1 | [25,30) | 120 | 0.6 |
2 | [30,35) | 195 | p |
3 | [35,40) | 100 | 0.5 |
4 | [40,45) | a | 0.4 |
5 | [45,50) | 30 | 0.3 |
6 | [50,55] | 15 | 0.3 |
(二)各年龄段人数频率分布直方图:
(Ⅰ)在答题卡给定的坐标系中补全频率分布直方图,并求出n、p、a的值;
(Ⅱ)从[40,50]岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动.若将这6个人通过抽签分成甲、乙两组,每组的人数相同,求[45,50]岁中被抽取的人恰好又分在同一组的概率;
(Ⅲ)根据所得各年龄段人数频率分布直方图,估计在本地[25,55]岁的人群中“低碳族”年龄的中位数.
4.已知直线l:y=-x+a与圆C:x2+y2=2相交于相异两点M、N,点O是坐标原点,且满足|$\overrightarrow{OM}$+$\overrightarrow{ON}$|>|$\overrightarrow{OM}$-$\overrightarrow{ON}$|,则实数a的取值范围是( )
A. | (-2,-$\sqrt{2}$)∪($\sqrt{2}$,2) | B. | (-$\sqrt{2}$,$\sqrt{2}$0 | C. | ($\sqrt{2}$,-1)∪(1,$\sqrt{2}$) | D. | (-1,1) |
3.“a<2015”是“函数f(x)=(x-a)2在区间[2015,+∞)上为增函数”的( )
0 248138 248146 248152 248156 248162 248164 248168 248174 248176 248182 248188 248192 248194 248198 248204 248206 248212 248216 248218 248222 248224 248228 248230 248232 248233 248234 248236 248237 248238 248240 248242 248246 248248 248252 248254 248258 248264 248266 248272 248276 248278 248282 248288 248294 248296 248302 248306 248308 248314 248318 248324 248332 266669
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |