11.掷两颗均匀的骰子,向上的点数之和为5的概率等于( )
A. | $\frac{1}{18}$ | B. | $\frac{1}{6}$ | C. | $\frac{5}{36}$ | D. | $\frac{1}{9}$ |
9.下列四个函数中,在区间(0,$\frac{1}{4}$)上为减函数的是( )
A. | y=x($\frac{1}{2}$)x | B. | y=-($\frac{1}{2}$)x | C. | y=xlog2x | D. | y=x${\;}^{\frac{1}{3}}$ |
8.设$\overrightarrow{OM}$=(2,1),$\overrightarrow{ON}$=(0,1),O为坐标原点,动点P(x,y)满足0≤$\overrightarrow{OP}$•$\overrightarrow{OM}$≤1,0≤$\overrightarrow{OP}$•$\overrightarrow{ON}$≤1,则x-y的最小值是( )
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
3.一汽车厂生产A、B、C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
0 248018 248026 248032 248036 248042 248044 248048 248054 248056 248062 248068 248072 248074 248078 248084 248086 248092 248096 248098 248102 248104 248108 248110 248112 248113 248114 248116 248117 248118 248120 248122 248126 248128 248132 248134 248138 248144 248146 248152 248156 248158 248162 248168 248174 248176 248182 248186 248188 248194 248198 248204 248212 266669
轿车A | 轿车B | 轿车C | |
舒适型 | 100 | 150 | z |
标准型 | 300 | 450 | 600 |
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.