15.某市为调查外来务工人员春节买票回家是否需要交通部门提供帮助的情况,用简单随机抽样方法从该市调查了1000位外来务工人员,结果如表:
(1)估计该市外来务工人员中春节买票回家需要交通部门帮助的比例;
(2)能否在犯错误的概率不超过0.001的前提下,认为该市外来务工人员春节买票回家是否需要交通部门提供帮助与性别有关?
男 | 女 | |
需要 | 80 | 60 |
不需要 | 320 | 540 |
(2)能否在犯错误的概率不超过0.001的前提下,认为该市外来务工人员春节买票回家是否需要交通部门提供帮助与性别有关?
14.某同学在研究性学习中,收集到某制药厂今年2-6月甲胶囊产量(单位:千盒)的数据如下表所示:
若该同学用最小二乘法求得线性回归方程为$\widehat{y}$=1.23x+a,则实数a=0.08.
月份 | 2 | 3 | 4 | 5 | 6 |
y(千盒) | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
13.函数y=x3+4x的递增区间是( )
A. | (0,+∞) | B. | (-∞,-2) | C. | (2,+∞) | D. | (-∞,+∞) |
9.某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
其中:“积极参加班级工作且学习积极性高的学生”的频率为0.36.
(1)补全表中数据,并求“不太主动参加班级的学生”的频率;
(2)试运用独立性检验的思想方法分析:能否在犯错误概率不超过0.001的前提下认为,学生的学习积极性与对待班级工作的态度有关系?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(其中n=a+b+c+d)
临界值表:
0 247531 247539 247545 247549 247555 247557 247561 247567 247569 247575 247581 247585 247587 247591 247597 247599 247605 247609 247611 247615 247617 247621 247623 247625 247626 247627 247629 247630 247631 247633 247635 247639 247641 247645 247647 247651 247657 247659 247665 247669 247671 247675 247681 247687 247689 247695 247699 247701 247707 247711 247717 247725 266669
积极参加班级工作 | 不太主动参加班级工作 | 合计 | |
学习积极性高 | 25 | ||
学习积极性一般 | 25 | ||
合计 | 24 | 26 | 50 |
(1)补全表中数据,并求“不太主动参加班级的学生”的频率;
(2)试运用独立性检验的思想方法分析:能否在犯错误概率不超过0.001的前提下认为,学生的学习积极性与对待班级工作的态度有关系?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(其中n=a+b+c+d)
临界值表:
P(K2≥K0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |