6.已知向量$\overrightarrow a=(cosθ,sinθ)$,向量$\overrightarrow b=(\sqrt{3},-1)$,则|2$\overrightarrow a-\overrightarrow b|$的最大值,最小值分别是( )
A. | 4,0 | B. | $4\sqrt{2}$,4 | C. | $4\sqrt{2}$,0 | D. | 16,0 |
5.若2sin2($\frac{π}{4}$+$\frac{x}{2}$)=1-cos(π-x),则sin2x=( )
A. | -1 | B. | 0 | C. | $\frac{1}{2}$ | D. | 1 |
4.已知集合A={x∈Z||x-1|<3},B={x|-x2-2x+3>0},则A∩B=( )
A. | (-2,1) | B. | (1,4) | C. | {-1,0} | D. | {2,3} |
1.复数$\frac{3+i}{1-3i}$+$\frac{1}{i}$等于( )
A. | 3-i | B. | -2i | C. | 2i | D. | 0 |
18.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,
求3名幸运选手中至少有一人在20~30岁之间的概率.
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
0 246785 246793 246799 246803 246809 246811 246815 246821 246823 246829 246835 246839 246841 246845 246851 246853 246859 246863 246865 246869 246871 246875 246877 246879 246880 246881 246883 246884 246885 246887 246889 246893 246895 246899 246901 246905 246911 246913 246919 246923 246925 246929 246935 246941 246943 246949 246953 246955 246961 246965 246971 246979 266669
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
求3名幸运选手中至少有一人在20~30岁之间的概率.
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)