7.已知f(x)为定义在[0,2)上的函数,f(x)=$\left\{\begin{array}{l}{cosπx,x∈[0,\frac{1}{2}]}\\{\frac{1}{2}tan(πx+\frac{π}{2}),x∈(\frac{1}{2},1)}\\{f(x-1),x∈[1,2)}\end{array}\right.$,则不等式f(2x-1)≤$\frac{1}{2}$的解集为( )
A. | [$\frac{1}{3},\frac{3}{4}$]∪[$\frac{4}{3},\frac{7}{4}$] | B. | [$\frac{2}{3},\frac{3}{4}$]∪[1,$\frac{7}{4}$] | C. | [$\frac{2}{3},\frac{7}{8}$]∪[$\frac{7}{6},\frac{11}{8}$] | D. | [$\frac{4}{3},\frac{7}{4}$]∪[$\frac{7}{3},\frac{11}{4}$] |
2.若f(x)=x2+px+q满足f(1)=f(2)=0,则f(4)的值是( )
0 246066 246074 246080 246084 246090 246092 246096 246102 246104 246110 246116 246120 246122 246126 246132 246134 246140 246144 246146 246150 246152 246156 246158 246160 246161 246162 246164 246165 246166 246168 246170 246174 246176 246180 246182 246186 246192 246194 246200 246204 246206 246210 246216 246222 246224 246230 246234 246236 246242 246246 246252 246260 266669
A. | 5 | B. | -5 | C. | 6 | D. | -6 |