ÌâÄ¿ÄÚÈÝ
20£®Ñ§Ð£²ÍÌüÿÌì¹Ì¶¨¹©Ó¦aÃûѧÉúÓòͣ¬Ã¿ÐÇÆÚÒ»ÓÐA£¬BÁ½ÖÖA¡¢BÁ½Öֲ˿ɹ©Ñ¡Ôñ£®µ÷²é±íÃ÷£¬·²ÔÚÕâÐÇÆÚһѡAÖֲ˵ģ¬ÏÂÐÇÆÚÒ»»áÓÐ20%¸ÄÑ¡BÖֲˣ»¶øÑ¡BÖֲ˵ģ¬ÏÂÐÇÆÚÒ»»áÓÐ30%¸ÄÑ¡AÖֲˣ®ÉèµÚn¸öÐÇÆÚһѡA¡¢BÁ½Öֲ˷ֱðÓÐan¡¢bn·Ö±ð±íʾµÚn¸öÐÇÆÚһѡAµÄÈËÊýºÍÑ¡BµÄÈËÊý£®£¨1£©ÊÔÓÃan-1±íʾan£¬ÅжÏÊýÁÐ{an-$\frac{3}{5}$a}ÊÇ·ñÓÐΪµÈ±ÈÊýÁв¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÈôµÚÒ»ÐÇÆÚÑ¡AÖֲ˵ÄÓÐ$\frac{a}{2}$ÈË£¬Çóan£»²¢ÎÊ´ÓµÚ¼¸ÐÇÆÚÒ»¿ªÊ¼Ñ¡AµÄÈËÊý³¬¹ýBµÄÈËÊýµÄ1.3±¶£®
·ÖÎö £¨1£©Éè{an}ΪµÚn¸öÐÇÆÚһѡAµÄÈËÊý£¬{bn}ΪµÚn¸öÐÇÆÚһѡBµÄÈËÊý£¬bn=a-an£¬¸ù¾ÝÕâÐÇÆÚһѡA²ËµÄ£¬ÏÂÐÇÆÚÒ»»áÓÐ$\frac{1}{5}$¸ÄÑ¡B²Ë£»¶øÑ¡B²ËµÄ£¬ÏÂÐÇÆÚÒ»»áÓÐ$\frac{3}{10}$¸ÄÑ¡A²Ë£¬¿ÉµÃan+1=$\frac{1}{2}$an+$\frac{3}{10}$a£¬ÔËÓõÝÍƹØϵʽ¼´¿É£®
£¨2£©ÓÉ£¨1£©¿ÉµÃan=$\frac{a}{5}•£¨3-\frac{1}{{2}^{n}}£©$¡¢bn=$\frac{a}{5}•£¨2+\frac{1}{{2}^{n}}£©$£¬ÀûÓÃ$\frac{a}{5}•£¨3-\frac{1}{{2}^{n}}£©$£¾1.3•$\frac{a}{5}•£¨2+\frac{1}{{2}^{n}}£©$£¬¼ÆËã¼´¿É£®
½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒâ¿ÉµÃ£ºÉè{an}ΪµÚn¸öÐÇÆÚһѡAµÄÈËÊý£¬{bn}ΪµÚn¸öÐÇÆÚһѡBµÄÈËÊý£¬
¸ù¾ÝÕâÐÇÆÚһѡB²ËµÄ£¬ÏÂÐÇÆÚÒ»»áÓÐ$\frac{3}{10}$¸ÄÑ¡A²Ë£¬
¡àan+1=an¡Á$\frac{4}{5}$+£¨a-an£©¡Á$\frac{3}{10}$£¬
¡àan+1=$\frac{1}{2}$an+$\frac{3}{10}$a£¬
±äÐοɵãºan+1-$\frac{3}{5}$a=$\frac{1}{2}$£¨an-$\frac{3}{5}$a£©£¬
¡àÊýÁÐ{an-$\frac{3}{5}$a}Êǹ«±ÈΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ»
£¨2£©¡ßµÚÒ»ÐÇÆÚÑ¡AÖֲ˵ÄÓÐ$\frac{a}{2}$ÈË£¬¡àa1=$\frac{a}{2}$£¬
¡àa1-$\frac{3}{5}$a=$-\frac{1}{10}$a£¬¡àan=$\frac{3}{5}$a+£¨$-\frac{1}{10}$a£©¡Á$£¨\frac{1}{2}£©^{n-1}$=$\frac{3}{5}a-\frac{1}{{2}^{n}}•\frac{1}{5}a$=$\frac{a}{5}•£¨3-\frac{1}{{2}^{n}}£©$£¬
¼´ÊýÁÐ{an}µÄͨÏîΪan=$\frac{a}{5}•£¨3-\frac{1}{{2}^{n}}£©$£¬
´Ëʱbn=a-an=$\frac{a}{5}•£¨2+\frac{1}{{2}^{n}}£©$£¬
Éè´ÓµÚnÐÇÆÚÒ»¿ªÊ¼Ñ¡AµÄÈËÊý³¬¹ýBµÄÈËÊýµÄ1.3±¶£¬
¼´$\frac{a}{5}•£¨3-\frac{1}{{2}^{n}}£©$£¾1.3•$\frac{a}{5}•£¨2+\frac{1}{{2}^{n}}£©$£¬
»¯¼òµÃ0.4£¾$\frac{2.3}{{2}^{n}}$£¬
¼´2n£¾$\frac{2.3}{0.4}$=5.75£¬
¡àn¡Ý3£¬
¹Ê´ÓµÚ3ÐÇÆÚÒ»¿ªÊ¼Ñ¡AµÄÈËÊý³¬¹ýBµÄÈËÊýµÄ1.3±¶£®
µãÆÀ ±¾Ì⿼²éÊýÁÐ֪ʶÔÚÉú²úʵ¼ÊÖеÄÓ¦Óã¬ÀíÇåÌâÉèÖеÄÊýÁ¿¹Øϵ£¬ºÏÀíµØÔËÓÃÊýÁÐ֪ʶ½øÐÐÇó½âÊǹؼü£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
A£® | 2 | B£® | 3 | C£® | $\sqrt{2}$ | D£® | $\sqrt{3}$ |
A£® | $\frac{{\sqrt{5}}}{3}$ | B£® | $\frac{{\sqrt{7}}}{3}$ | C£® | $\frac{{\sqrt{10}}}{3}$ | D£® | $\frac{{\sqrt{15}}}{3}$ |