4.已知f(x)是定义在R上的偶函数.其导函数为f′(x),若f(x)+xf′(x)<0,且f(x+1)=f(3-x),f(2015)=2,则不等式xf(x)<2的解集为( )
A. | (-∞,2015) | B. | (2015,+∞) | C. | (-∞,0) | D. | (1,+∞) |
3.给定区域D:$\left\{\begin{array}{l}{2x-y+k≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,(k为非负实数),若对区域D内任意一点N(x,y)恒有5x+2y-2k2+1>0成立,则实数k的取值范围是( )
A. | ($\frac{1}{2}$,1) | B. | [0,1) | C. | [0,$\frac{1}{2}$) | D. | [1,+∞) |
2.设x0是正常数,x1,x2,x3,…xn(n∈N*)是一组正数,定义$\overline{x}$=$\frac{ln\frac{{x}_{1}}{{x}_{0}}+ln\frac{{x}_{2}}{{x}_{0}}+…+ln\frac{{x}_{n}}{{x}_{0}}}{n}$为x1,x2,…xn相对于常数x0的“自然均值”,则自然数2,22,…22015相对于e(e是自然对数的底数)的“自然均值”为( )
A. | $\frac{2015}{2}$ln2-1 | B. | 1008ln2-1 | C. | $\frac{2017}{2}$ln2-1 | D. | 1009ln2-1 |
1.已知实数a=log${\;}_{\frac{1}{3}}$2,b=log2e,c=($\frac{1}{3}$)0.4,则a,b,c的大小顺序为( )
A. | c<a<b | B. | a<c<b | C. | a<b<c | D. | b<c<a |
20.设a,b∈R,i是虚数单位,若a+1+bi=2-2i,则复数$\frac{a+bi}{a-bi}$对应的点在( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
18.某中学研究性学习小组,为了研究高中理科学生的物理成绩是否与数学成绩有关系,在本校高三年级随机调查了50名理科学生,调查结果表明:在数学成绩优秀的25人中16人物理成绩优秀,另外9人物理成绩一般;在数学成绩一般的25人中有6人物理成绩优秀,另外19人物理成绩一般.
(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为高中理科学生的物理成绩与数学成绩有关系;
(Ⅱ)以调查结果的频率作为概率,从该校数学成绩优秀的学生中任取100人,求100人中物理成绩优秀的人数的数学期望和标准差.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
0 245476 245484 245490 245494 245500 245502 245506 245512 245514 245520 245526 245530 245532 245536 245542 245544 245550 245554 245556 245560 245562 245566 245568 245570 245571 245572 245574 245575 245576 245578 245580 245584 245586 245590 245592 245596 245602 245604 245610 245614 245616 245620 245626 245632 245634 245640 245644 245646 245652 245656 245662 245670 266669
(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为高中理科学生的物理成绩与数学成绩有关系;
数学成绩优秀 | 数学成绩一般 | 总计 | |
物理成绩优秀 | |||
物理成绩一般 | |||
总计 |
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |