题目内容
【题目】己知函数.
(1)当时,求的单调区间和极值;
(2)讨论的零点的个数.
【答案】(1)见解析;(2)当或时,有1个零点;当且时,有2个零点.
【解析】
(1)利用导数证明函数的单调性以及即可;
(2)对参数的值进行分类讨论,确定函数的单调性,结合零点存在性定理判断零点的个数.
(1)的定义域为,
则在上单调递增
又,所以当时,
当时,
即的单调递减区间为,单调递增区间为
故的极小值为,无极大值
(2)当时,由(1)知
故仅有一个零点;
当时,,令;
令,所以在上单调递增;
令,所以在上单调递减,且,,
所以,最小值与0的比较等价于与0的大小比较,
所以分三类进行讨论:
①当时,即时,由在上单调递减及在上单调递增,且,
由零点存在定理,得在上存在唯一零点,设为所以
0 | |||||
0 | 0 | ||||
递增 | 极大值 | 递减 | 极小值 | 递增 |
又及
由零点存在定理,得在上存在唯一零点,设为,
综上,当时,在上存在2个零点(一个为,一个为);
②当时,即时,由在上单调递减及在上单调递增,
且,得在上单调递增,
故在上只有一个零点;
③当时,同理可得在上存在2个零点:一个为,一个为
综上可得,当或时,有1个零点;
当且时,有2个零点.
【题目】为积极响应国家“阳光体育运动”的号召,某学校在了解到学生的实际运动情况后,发起以“走出教室,走到操场,走到阳光”为口号的课外活动倡议。为调查该校学生每周平均体育运动时间的情况,从高一高二基础年级与高三三个年级学生中按照4:3:3的比例分层抽样,收集300位学生每周平均体育运动时间的样本数据(单位:小时),得到如图所示的频率分布直方图。
(1)据图估计该校学生每周平均体育运动时间.并估计高一年级每周平均体育运动时间不足4小时的人数;
(2)规定每周平均体育运动时间不少于6小时记为“优秀”,否则为“非优秀”,在样本数据中,有30位高三学生的每周平均体育运动时间不少于6小时,请完成下列列联表,并判断是否有99%的把握认为“该校学生的每周平均体育运动时间是否“优秀”与年级有关”.
基础年级 | 高三 | 合计 | |
优秀 | |||
非优秀 | |||
合计 | 300 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:K2,n=a+b+c+d.