题目内容
(本小题满分13分)
已知函数
、
(Ⅰ)求函数
的单调区间;
(Ⅱ)若
为正常数,设
,求函数
的最小值;
(Ⅲ)若
,
,证明:
、
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200117703643.png)
(Ⅰ)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200117734497.png)
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200117750306.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200117906843.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118109486.png)
(Ⅲ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118218382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118233402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232001182491186.png)
(Ⅰ)∵
,解
,得
;解
,得
.
∴
的单调递增区间是
,单调递减区间是
. ……3′
(Ⅱ)∵
,定义域是
.
∴
……5′
由
,得
,由
,得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118639593.png)
∴ 函数
在
上单调递减;在
上单调递增……7′
故函数
的最小值是:
. ……8′
(Ⅲ)∵
,
,∴ 在(Ⅱ)中取
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118904399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118920332.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118920332.jpg)
可得
,即
.……10′
∴
,∴
.
即
.……12′
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118265717.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118296604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118311442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118327603.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118343527.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200117734497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118389662.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118499615.png)
(Ⅱ)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232001185141280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118545518.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232001185611257.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118577592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118608577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118623588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118639593.png)
∴ 函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118655485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118701671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118748666.png)
故函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118655485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118826944.png)
(Ⅲ)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118842383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118233402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118889616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118904399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118920332.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118920332.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200118920332.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232001192321327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232001192631171.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232001192791022.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232001197001231.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232001182491186.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目