题目内容
【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)求出的值;
(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求这2组恰好抽到2人的概率.
【答案】(1)(2)平均数为41.5,中位数为(3)
【解析】试题分析:(1)利用频率分布直方图可得的值;(2)平均数为;岁;设中位数为,则 岁;(3)第1,2,3组的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为. 设从5人中随机抽取3人,共10个基本事件,从而得到第2组中抽到2人的概率.
试题解析:
(1)由,得.
(2)平均数为;岁;
设中位数为,则 岁.
(3)第1,2,3组的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为.
设从5人中随机抽取3人,为,共10个基本事件,从而第2组中抽到2人的概率.
【题目】大连市某企业为确定下一年投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
46.6 | 573 | 6.8 | 289.8 | 1.6 | 215083.4 | 31280 |
表中,.
根据散点图判断,与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)
根据的判断结果及表中数据,建立关于的回归方程;
已知这种产品的年利润与、的关系为.根据的结果回答下列问题:
年宣传费时,年销售量及年利润的预报值是多少?
年宣传费为何值时,年利润的预报值最大?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:
,.