题目内容

【题目】如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE= ,∠EAD=∠EAB.
(1)证明:平面ACEF⊥平面ABCD;
(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.

【答案】
(1)证明:连接EG,

∵四边形ABCD为菱形,∴AD=AB,BD⊥AC,DG=GB,

在△EAD和△EAB中,

AD=AB,AE=AE,∠EAD=∠EAB,

∴△EAD≌△EAB,

∴ED=EB,则BD⊥EG,

又AC∩EG=G,∴BD⊥平面ACEF,

∵BD平面ABCD,

∴平面ACEF⊥平面ABCD


(2)解法一:过G作EF的垂线,垂足为M,连接MB,MG,MD,

易得∠EAC为AE与面ABCD所成的角,

∴∠EAC=60°,

∵EF⊥GM,EF⊥BD,

∴EF⊥平面BDM,

∴∠DMB为二面角B﹣EF﹣D的平面角,

可求得MG= ,DM=BM=

在△DMB中,由余弦定理可得:cos∠BMD=

∴二面角B﹣EF﹣D的余弦值为

解法二:如图,在平面ABCD内,过G作AC的垂线,交EF于M点,

由(1)可知,平面ACEF⊥平面ABCD,

∵MG⊥平面ABCD,

∴直线GM、GA、GB两两互相垂直,

分别以GA、GB、GM为x、y、z轴建立空间直角坐标系G﹣xyz,

可得∠EAC为AE与平面ABCD所成的角,∴∠EAC=60°,

则D(0,﹣1,0),B(0,1,0),E( ),F( ),

设平面BEF的一个法向量为 ,则

取z=2,可得平面BEF的一个法向量为

同理可求得平面DEF的一个法向量为

∴cos< >= =

∴二面角B﹣EF﹣D的余弦值为


【解析】(1)连接EG,由四边形ABCD为菱形,可得AD=AB,BD⊥AC,DG=GB,可证△EAD≌△EAB,进一步证明BD⊥平面ACEF,则平面ACEF⊥平面ABCD;(2)法一、过G作EF的垂线,垂足为M,连接MB,MG,MD,可得∠EAC为AE与面ABCD所成的角,得到EF⊥平面BDM,可得∠DMB为二面角B﹣EF﹣D的平面角,在△DMB中,由余弦定理求得∠BMD的余弦值,进一步得到二面角B﹣EF﹣D的余弦值;法二、在平面ABCD内,过G作AC的垂线,交EF于M点,由(1)可知,平面ACEF⊥平面ABCD,得MG⊥平面ABCD,则直线GM、GA、GB两两互相垂直,分别以GA、GB、GM为x、y、z轴建立空间直角坐标系G﹣xyz,分别求出平面BEF与平面DEF的一个法向量,由两法向量所成角的余弦值可得二面角B﹣EF﹣D的余弦值.
【考点精析】通过灵活运用平面与平面垂直的判定,掌握一个平面过另一个平面的垂线,则这两个平面垂直即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网