题目内容

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+ )=2
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.

【答案】
(1)

解:曲线C1的参数方程为 (α为参数),

移项后两边平方可得 +y2=cos2α+sin2α=1,

即有椭圆C1 +y2=1;

曲线C2的极坐标方程为ρsin(θ+ )=2

即有ρ( sinθ+ cosθ)=2

由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,

即有C2的直角坐标方程为直线x+y﹣4=0;


(2)

解:由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,

|PQ|取得最值.

设与直线x+y﹣4=0平行的直线方程为x+y+t=0,

联立 可得4x2+6tx+3t2﹣3=0,

由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,

解得t=±2,

显然t=﹣2时,|PQ|取得最小值,

即有|PQ|= =

此时4x2﹣12x+9=0,解得x=

即为P( ).

另解:设P( cosα,sinα),

由P到直线的距离为d=

=

当sin(α+ )=1时,|PQ|的最小值为

此时可取α= ,即有P( ).


【解析】(1)运用两边平方和同角的平方关系,即可得到C1的普通方程,运用x=ρcosθ,y=ρsinθ,以及两角和的正弦公式,化简可得C2的直角坐标方程;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,代入椭圆方程,运用判别式为0,求得t,再由平行线的距离公式,可得|PQ|的最小值,解方程可得P的直角坐标.
另外:设P( cosα,sinα),由点到直线的距离公式,结合辅助角公式和正弦函数的值域,即可得到所求最小值和P的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网