题目内容
【题目】如图在直角梯形BB1C1C中,∠CC1B1=90°,BB1∥CC1 , CC1=B1C1=2BB1=2,D是CC1的中点.四边形AA1C1C可以通过直角梯形BB1C1C以CC1为轴旋转得到,且二面角B1﹣CC1﹣A为120°.
(1)若点E是线段A1B1上的动点,求证:DE∥平面ABC;
(2)求二面角B﹣AC﹣A1的余弦值.
【答案】
(1)证明:如图所示,连接B1D,DA1.
由已知可得: ,
∴四边形B1BDC是平行四边形,∴B1D∥BC,
而BC平面ABC,B1D平面ABC;
∴B1D∥平面ABC.
同理可得:DA1∥平面ABC.又A1D∩DB1=D,
∴平面B1DA1∥平面ABC;DE平面B1DA1;
∴DE∥平面ABC.
(2)解:作C1M⊥C1B1交A1B1于点M,分别以C1M,C1B1,C1C为x轴,y轴,z轴,建立空间直角坐标系.
则C1(0,0,0),A1( ,﹣1,0),B(0,2,1),C(0,0,2),A( ,﹣1,1),
=( ,﹣1,﹣1), =(0,2,﹣1), =(0,0,2).
设平面ABC的法向量为 =(x1,y1,z1),则 ,即 ,取 =( ,1,2).
设平面A1ACC1ABC的法向量为 =(x2,y2,z2),则 ,即 ,取 =(1, ,0).
∴ = = = .
∴二面角B﹣AC﹣A1的余弦值是 .
【解析】(1)如图所示,连接B1D,DA1 . 由已知可得四边形B1BDC是平行四边形,B1D∥BC,可得B1D∥平面ABC.同理可得:DA1∥平面ABC.可得平面B1DA1∥平面ABC;即可证明DE∥平面ABC.(2)作C1M⊥C1B1交A1B1于点M,分别以C1M,C1B1 , C1C为x轴,y轴,z轴,建立空间直角坐标系.设平面ABC的法向量为 =(x1 , y1 , z1),则 ,可得 .设平面A1ACC1ABC的法向量为 =(x2 , y2 , z2),则 ,可得 .利用 = 即可得出.
【考点精析】本题主要考查了直线与平面平行的判定的相关知识点,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行才能正确解答此题.
【题目】某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:
积极参加班级工作 | 不太主动参加班级工作 | 合计 | |
学习积极性高 | 18 | 7 | 25 |
学习积极性一般 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(Ⅰ)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.
参考公式与临界值表:K2= .
p(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |