题目内容
曲线y2=4x关于直线x=2对称的曲线方程是( )
A.y2=8-4x | B.y2=4x-8 |
C.y2=16-4x | D.y2=4x-16 |
C
要求曲线y2=4x关于直线x=2对称的曲线方程,我们可采用坐标法,即设出待求曲线上任一点为P(x,y),然后根据P点关于直线x=2对称的Q(4-x,y)在曲线y2=4x上,然后将Q点代入曲线y2=4x中,即可得到x,y之间的关系,即为所求曲线的方程.
解:设曲线y2=4x关于直线x=2对称的曲线为C,
在曲线C上任取一点P(x,y),
则P(x,y)关于直线x=2的对称点为Q(4-x,y).
因为Q(4-x,y)在曲线y2=4x上,
所以y2=4(4-x),
即y2=16-4x.
故选C.
解:设曲线y2=4x关于直线x=2对称的曲线为C,
在曲线C上任取一点P(x,y),
则P(x,y)关于直线x=2的对称点为Q(4-x,y).
因为Q(4-x,y)在曲线y2=4x上,
所以y2=4(4-x),
即y2=16-4x.
故选C.
练习册系列答案
相关题目