题目内容
(本小题12分) 正项数列{an}满足a1=2,点An()在双曲线y2-x2=1上,点()在直线y=-x+1上,其中Tn是数列{bn}的前n项和。
①求数列{an}、{bn}的通项公式;
②设Cn=anbn,证明 Cn+1<Cn
③若m-7anbn>0恒成立,求正整数m的最小值。
(1) an=n+1, (2)利用单调性法加以证明。
(3) m的最小值为10
解析试题分析:① 由已知点An在y2-x2=1上知,an+1-an=1,
∴数列{an}是一个以2为首项,以1为公差的等差数列。
∴an=n+1
∵点()在直线y=-x+1上
∴Tn=-bn+1 ①
∴Tn-1=-bn-1+1 ②
①②两式相减得bn=-bn+bn-1
∴
令n=1得
∴,。
∴
②
∴
=
=
=<0,
∴<
③ ∵ 而m>7恒成立 ∴m>7c1= 而
∴m的最小值为10。
考点:本试题考查了数列的通项公式和前n项和的求解运用。
点评:对于数列图像的求解,该试题以函数为背景建立了递推关系式,进而得到是等差数列,同时能借助于通项公式与前n项和的关系式,整体的思想求解通项公式,这是重要的一点。而对于错位相减法求和需要熟练掌握,找到容易出错的细节就是最后一步的合并,要细心点,属于中档题。
练习册系列答案
相关题目