题目内容
已知矩阵M=,△ABC的顶点为A(0,0),B(2,0),C(1,2),求△ABC在矩阵M-1的变换作用下所得△A′B′C′的面积.
6
解析
求矩阵M=的特征值.
2×2矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1)求矩阵M.(2)设直线l在矩阵M对应的变换作用下得到了直线m:x-y=4.求直线l的方程.
已知矩阵,(1)求逆矩阵;(2)若矩阵满足,试求矩阵.
已知矩阵(Ⅰ)求矩阵的逆矩阵; (Ⅱ)若直线经过矩阵变换后的直线方程为,求直线的方程.
已知M=.(1)求逆矩阵M-1.(2)若向量X满足MX=,试求向量X.
在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值.
已知矩阵A=,向量β=.求向量α,使得A2α=β.