题目内容

【题目】已知六棱锥的底面是正六边形,平面.则下列命题中正确的有_____.(填序号)

PBAD

平面PAB⊥平面PAE

BC∥平面PAE

直线PD与平面ABC所成的角为45°.

【答案】②④

【解析】

利用题中条件,逐一分析答案,通过排除和筛选,得到正确答案.

∵AD与PB在平面的射影AB不垂直,∴①不成立;

∵PA⊥平面ABC,∴PA⊥AB,在正六边形ABCDEF中,AB⊥AE,PAAE=A,∴AB⊥平面PAE,

AB面PAB,∴平面PAB⊥平面PAE,故②成立;

∵BC∥AD∥平面PAD,平面PAD平面PAE=PA,∴直线BC∥平面PAE也不成立,即③不成立.

在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.

故答案为:②④.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网