题目内容
【题目】设函数fn(x)=﹣1+x+ + +…+ (x∈R,n∈N+),证明:
(1)对每个n∈N+ , 存在唯一的x∈[ ,1],满足fn(xn)=0;
(2)对于任意p∈N+ , 由(1)中xn构成数列{xn}满足0<xn﹣xn+p< .
【答案】
(1)证明:对每个n∈N+,当x>0时,由函数fn(x)=﹣1+x+ ),可得
f′(x)=1+ + +… >0,故函数f(x)在(0,+∞)上是增函数.
由于f1(x1)=0,当n≥2时,fn(1)= + +…+ >0,即fn(1)>0.
又fn( )=﹣1+ +[ + + +…+ ]≤﹣ +
=﹣ + × =﹣ <0,
根据函数的零点的判定定理,可得存在唯一的xn ,满足fn(xn)=0
(2)证明:对于任意p∈N+,由(1)中xn构成数列{xn},当x>0时,∵fn+1(x)=fn(x)+ >fn(x),
∴fn+1(xn)>fn(xn)=fn+1(xn+1)=0.
由 fn+1(x) 在(0,+∞)上单调递增,可得 xn+1<xn,即 xn﹣xn+1>0,故数列{xn}为减数列,即对任意的 n、p∈N+,xn﹣x/span>n+p>0.
由于 fn(xn)=﹣1+xn+ + +…+ =0 ①,
fn+p (xn+p)=﹣1+xn+p+ + +…+ +[ + +…+ ]②,
用①减去②并移项,利用 0<xn+p≤1,可得
xn﹣xn+p= + ≤ ≤ < = < .
综上可得,对于任意p∈N+,由(1)中xn构成数列{xn}满足0<xn﹣xn+p<
【解析】(1)由题意可得f′(x)>0,函数f(x)在(0,+∞)上是增函数.求得fn(1)>0,fn( )<0,再根据函数的零点的判定定理,可得要证的结论成立.(2)由题意可得fn+1(xn)>fn(xn)=fn+1(xn+1)=0,由 fn+1(x) 在(0,+∞)上单调递增,可得 xn+1<xn , 故xn﹣xn+p>0.用 fn(x)的解析式减去fn+p (xn+p)的解析式,变形可得xn﹣xn+p= + ,再进行放大,并裂项求和,可得它小于 ,综上可得要证的结论成立.
【考点精析】本题主要考查了基本求导法则和数列的前n项和的相关知识点,需要掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导;数列{an}的前n项和sn与通项an的关系才能正确解答此题.
【题目】随着支付宝、微信等支付方式的上线,越来越多的商业场景可以实现手机支付.有关部门为了了解各年龄段的人使用手机支付的情况,随机调查了50次商业行为,并把调查结果制成下表:
年龄(岁) | ||||||
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
手机支付 | 4 | 6 | 10 | 6 | 2 | 0 |
(1)若把年龄在的人称为中青年,年龄在的人称为中老年,请根据上表完成以下列联表;并判断是否可以在犯错误的概率不超过0.05的前提下,认为使用手机支付与年龄(中青年、中老年)有关系?
手机支付 | 未使用手机支付 | 总计 | |
中青年 | |||
中老年 | |||
总计 |
(2)若从年龄在的被调查中随机选取2人进行调查,记选中的2人中,使用手机支付的人数为,求的分布列及数学期望.
参考公式:,其中.
独立性检验临界值表:
0.15 | 0.10 | 0.005 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |