题目内容

【题目】已知等比数列{an}满足2a1+a3=3a2 , 且a3+2是a2 , a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=an+log2 ,Sn=b1+b2+…bn , 求使 Sn﹣2n+1+47<0 成立的正整数n的最小值.

【答案】
(1)解:设等比数列{an}的首项为a1,公比为q,

依题意,∵2a1+a3=3a2,且a3+2是a2,a4的等差中项

由 ①得 q2﹣3q+2=0,解得q=1或q=2.

当q=1时,不合题意舍;

当q=2时,代入(2)得a1=2,所以an=2n


(2)解: =2n﹣n

所以Sn=b1+b2+…bn=(2+22++2n)﹣(1+2+…+n)=2n+1﹣2﹣ n2

因为 ,所以2n+1﹣2﹣ n2﹣2n+1+47<0,

即n2+n﹣90>0,解得n>9或n<﹣10.

故使 成立的正整数n的最小值为10


【解析】(1)设等比数列{an}的首项为a1 , 公比为q,根据2a1+a3=3a2 , 且a3+2是a2 , a4的等差中项,建立方程组,从而可求数列{an}的通项公式;(2) =2n﹣n,求出Sn=b1+b2+…bn , 再利用 ,建立不等式,即可求得使 成立的正整数n的最小值.
【考点精析】掌握等比数列的通项公式(及其变式)是解答本题的根本,需要知道通项公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网