题目内容
【题目】5名男生4名女生站成一排,求满足下列条件的排法:
(1)女生都不相邻有多少种排法?
(2)男生甲、乙、丙排序一定(只考虑位置的前后顺序),有多少种排法?
(3)男甲不在首位,男乙不在末位,有多少种排法?
【答案】(1)43200(2)60480(3)287280
【解析】
试题(1)不相邻排法,可使用插空法,先将男生排好,再将男生排入女生的空档中;(2)可以先将所有学生任意全排列,再将男生三人的多余排法除去;(3)分类,先考虑甲在末位;甲在首位,乙在末位;甲不在首位,乙在末位;甲乙都在首位与末位的.
试题解析:解:(1)任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有 (种)不同排法.
(2)9人的所有排列方法有种,其中甲、乙、丙的排序有种,又对应甲、乙、丙只有 一种排序,所以甲、乙、丙排序一定的排法有 (种).
(3)法一:甲不在首位,按甲的排法分类,若甲在末位,则有种排法,若甲不在末位,则甲有种排法,乙有种排法,其余有种排法,综上共有(+ )= 287280(种)排法. (或者)-2+=287280(种)
(或者)-2 -=287280(种)
练习册系列答案
相关题目