题目内容

9.已知函数f(x)=x2-(b+2)x+c存在b∈R,使得任意x∈[0,c]时,2-2x≤f(x)≤6-2x恒成立,求c的最大值.

分析 令g(x)=x2-bx+c,即有原不等式即为当x∈[0,c]时,2≤g(x)≤6恒成立.根据不等式恒成立,转化为求相应的最值,注意对b讨论,①若b≤0,则$\frac{b}{2}$≤1,②若0<$\frac{b}{2}$<$\frac{c}{2}$,即0<b<c,③若0<$\frac{b}{2}$=$\frac{c}{2}$,即0<b=c,④若0<$\frac{c}{2}$<$\frac{b}{2}$<c,即0<c<b<2c,⑤若$\frac{b}{2}$≥c,即b≥2c.运用单调性即可求得最值.

解答 解:∵函数f(x)=x2-(b+2)x+c,
当x∈[0,c]时,2-2x≤f(x)≤6-2x恒成立,
即为2≤x2-bx+c≤6恒成立,
∴c>0,
令g(x)=x2-bx+c,即有当x∈[0,c]时,2≤g(x)≤6恒成立.
①若b≤0,则$\frac{b}{2}$≤0,此时g(x)在[0,c]上单调递增,
∴$\left\{\begin{array}{l}{g(x)_{min}=g(0)≥2}\\{g(x)_{max}=g(c)≤6}\end{array}\right.$即$\left\{\begin{array}{l}{c≥2}\\{{c}^{2}-bc+c≤6}\end{array}\right.$,
由c2-bc+c≤6得b≥c-$\frac{6}{c}$+1≥2-$\frac{6}{2}$+1=0,
∴b=0,此时$\left\{\begin{array}{l}{c≥2}\\{{c}^{2}+c≤6}\end{array}\right.$,
解得$\left\{\begin{array}{l}{b=0}\\{c=2}\end{array}\right.$.
②若0<$\frac{b}{2}$<$\frac{c}{2}$,即0<b<c,此时$\left\{\begin{array}{l}{g(x)_{min}=g(\frac{b}{2})≥2}\\{g(x)_{max}=g(c)≤6}\end{array}\right.$,
即$\left\{\begin{array}{l}{c-\frac{{b}^{2}}{4}≥2}\\{{c}^{2}-bc+c≤6}\\{0<b<c}\end{array}\right.$,∴$\left\{\begin{array}{l}{c≥\frac{{b}^{2}}{4}+2}\\{b≥c-\frac{6}{c}+1}\\{0<b<c}\end{array}\right.$,即$\left\{\begin{array}{l}{c≥2}\\{c-\frac{6}{c}+1<c}\end{array}\right.$,
∴2<c<6,
又c-$\frac{{b}^{2}}{4}$≥2,则b≤2$\sqrt{c-2}$,
∴c-$\frac{6}{c}$+1≤2$\sqrt{c-2}$,
令h(x)=x-$\frac{6}{x}$+1,r(x)=2$\sqrt{x-2}$,
∴h(2)=g(2)=0,h(3)=g(3)=2,
且h(x)与r(x)均在(2,6)上单调递增,
当2<x<3时,h(x)的图象在r(x)图象的下方,即此时h(x)<r(x),
∴不等式c-$\frac{6}{c}$+1≤2$\sqrt{c-2}$的解为2<c≤3,
当c=3时,$\left\{\begin{array}{l}{3-\frac{{b}^{2}}{4}≥2}\\{{3}^{2}-3b+3≤6}\\{0<b<3}\end{array}\right.$,即$\left\{\begin{array}{l}{b≤2}\\{b≥2}\\{0<b<3}\end{array}\right.$,解得b=2.
③若0<$\frac{b}{2}$=$\frac{c}{2}$,即0<b=c,此时$\left\{\begin{array}{l}{g(x)_{min}=g(\frac{b}{2})≥2}\\{g(x)_{max}=g(0)≤6}\end{array}\right.$,
即$\left\{\begin{array}{l}{c-\frac{{b}^{2}}{4}≥2}\\{c≤6}\\{0<b<3}\end{array}\right.$,此时不等式无解.
④若0<$\frac{c}{2}$<$\frac{b}{2}$<c,即0<c<b<2c,此时$\left\{\begin{array}{l}{g(x)_{min}=g(\frac{b}{2})≥2}\\{g(x)_{max}=g(0)≤6}\end{array}\right.$,即$\left\{\begin{array}{l}{c-\frac{{b}^{2}}{4}≥2}\\{c≤6}\end{array}\right.$,
即$\left\{\begin{array}{l}{c≥\frac{{b}^{2}}{4}+2}\\{c≤6}\\{c<b}\end{array}\right.$,∴$\frac{{b}^{2}}{4}$+2<b,b2-4b+8<0此时不等式无解.
⑤若$\frac{b}{2}$≥c,即b≥2c,此时f(x)在[0,c]上单调递减,
∴$\left\{\begin{array}{l}{g(x)_{min}=g(c)≥2}\\{g(x)_{max}=g(0)≤6}\end{array}\right.$,即$\left\{\begin{array}{l}{{c}^{2}-bc+c≥2}\\{c≤6}\\{b≥2c}\end{array}\right.$,即$\left\{\begin{array}{l}{b≤c-\frac{2}{c}+1}\\{c≤6}\\{b≥2c}\end{array}\right.$,
∴2c≤c-$\frac{2}{c}$+1,
即c+$\frac{2}{c}$≤1,而当c>0时,c+$\frac{2}{c}$≥2$\sqrt{2}$>1,∴此时不等式无解.
综上c的取值范围是[2,3],c的最大值是3,此时b=2.

点评 本题主要考查二次函数的图象和性质,综合性较强,运算量较大,难度不小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网