ÌâÄ¿ÄÚÈÝ
17£®ÒÑÖªÏòÁ¿$\overrightarrow{m}$=£¨$\sqrt{3}$cos¦Øx£¬cos¦Øx£©£¬$\overrightarrow{n}$=£¨sin¦Øx£¬-cos¦Øx£©£¨¦Ø£¾0£©£¬º¯Êýf£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$µÄ×îСÕýÖÜÆÚΪ$\frac{¦Ð}{2}$£®£¨1£©»¯¼òf£¨x£©£»
£¨2£©Çó¦ØµÄÖµ£»
£¨3£©µ±mΪºÎֵʱ£¬Ö±Ïßy=mÓ뺯Êýy=f£¨x£©£¬x¡Ê[0£¬$\frac{¦Ð}{4}$]µÄͼÏóÖ»ÓÐÒ»¸ö½»µã£®
·ÖÎö £¨1£©½øÐÐÊýÁ¿»ýµÄÔËË㣬Ȼºó¸ù¾Ý¶þ±¶½ÇµÄÕýÓàÏÒ¹«Ê½¼°Á½½Ç²îµÄÕýÏÒ¹«Ê½¼´¿ÉµÃ³öf£¨x£©=$sin£¨2¦Øx-\frac{¦Ð}{6}£©-\frac{1}{2}$£»
£¨2£©¸ù¾Ýf£¨x£©µÄ×îСÕýÖÜÆÚΪ$\frac{¦Ð}{2}$±ãÓУ¬$\frac{2¦Ð}{2¦Ø}=\frac{¦Ð}{2}$£¬´Ó¶ø¿ÉÇóµÃ¦Ø=4£»
£¨3£©¸ù¾ÝÌâÒâ±ãÖª£¬·½³Ìm+$\frac{1}{2}$=$sin£¨4x-\frac{¦Ð}{6}£©$Ö»ÓÐÒ»¸ö½â£¬¿É»»Ôª£¬Áî4x-$\frac{¦Ð}{6}$=t£¬´Ó¶øµÃ³öÖ±Ïßy=m+$\frac{1}{2}$ºÍy=sint£¬ÔÚt$¡Ê[-\frac{¦Ð}{6}£¬\frac{5¦Ð}{6}]$ÉÏÖ»ÓÐÒ»¸ö½»µã£¬ÕâÑù¸ù¾ÝÕýÏÒº¯ÊýÔÚ$[-\frac{¦Ð}{6}£¬\frac{5¦Ð}{6}]$ÉϵÄͼÏ󼴿ɵóömµÄÈ¡Öµ£®
½â´ð ½â£º£¨1£©$\overrightarrow{m}•\overrightarrow{n}=\sqrt{3}sin¦Øxcos¦Øx-co{s}^{2}¦Øx$=$\frac{\sqrt{3}}{2}sin2¦Øx-\frac{1+cos2¦Øx}{2}$=$sin£¨2¦Øx-\frac{¦Ð}{6}£©-\frac{1}{2}$£»
¡à$f£¨x£©=sin£¨2¦Øx-\frac{¦Ð}{6}£©-\frac{1}{2}$£»
£¨2£©¡ßf£¨x£©µÄ×îСÕýÖÜÆÚΪ$\frac{¦Ð}{2}$£»
¡à$\frac{2¦Ð}{2¦Ø}=\frac{¦Ð}{2}$£»
¡à¦Ø=2£»
£¨3£©$f£¨x£©=sin£¨4x-\frac{¦Ð}{6}£©-\frac{1}{2}$£»
¸ù¾ÝÌâÒ⣬·½³Ì$m=sin£¨4x-\frac{¦Ð}{6}£©-\frac{1}{2}$Ö»ÓÐÒ»¸ö½â£»
¼´·½³Ì$m+\frac{1}{2}=sin£¨4x-\frac{¦Ð}{6}£©$Ö»ÓÐÒ»¸ö½â£¬Áî4x-$\frac{¦Ð}{6}$=t£¬$t¡Ê[-\frac{¦Ð}{6}£¬\frac{5¦Ð}{6}]$£»
¡àÖ±Ïßy=$m+\frac{1}{2}$ºÍy=sintÔÚt$¡Ê[-\frac{¦Ð}{6}£¬\frac{5¦Ð}{6}]$Ö»ÓÐÒ»¸ö½»µã£¬ÈçͼËùʾ£º
¸ù¾ÝͼÏó¿´³öy=1ºÍy=-$\frac{1}{2}$¶¼ºÍy=sintÔÚ[$-\frac{¦Ð}{6}£¬\frac{5¦Ð}{6}$]ÉÏÖ»ÓÐÒ»¸ö½»µã£»
¼´$m=\frac{1}{2}$£¬»òm=-1ʱ£¬Ö±Ïßy=mºÍº¯Êýy=f£¨x£©£¬x$¡Ê[0£¬\frac{¦Ð}{4}]$µÄͼÏóÖ»ÓÐÒ»¸ö½»µã£®
µãÆÀ ¿¼²éÊýÁ¿»ýµÄ×ø±êÔËË㣬¶þ±¶½ÇµÄÕýÓàÏÒ¹«Ê½£¬Á½½Ç²îµÄÕýÏÒ¹«Ê½£¬ÒÔ¼°Èý½Çº¯ÊýÖÜÆڵĸÅÄî¼°ÆäÇ󷨣¬Ö±ÏߺÍÇúÏß½»µãºÍ¶ÔÓ¦µÄÖ±Ïß·½³ÌºÍÇúÏß·½³ÌÐγɷ½³Ì×é½âµÄ¹Øϵ£¬ÊýÐνáºÏ½âÌâµÄ·½·¨£¬ÊìϤÕýÏÒº¯ÊýͼÏó£®
A£® | a£¼0 | B£® | a£¾0 | C£® | a¡Ü0 | D£® | aΪÈÎÒâʵÊý |
A£® | ÏòÓÒƽÒÆ$\frac{¦Ð}{3}$¸öµ¥Î» | B£® | ÏòÓÒƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» | ||
C£® | Ïò×óƽÒÆ$\frac{¦Ð}{3}$¸öµ¥Î» | D£® | Ïò×óƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» |