题目内容

(1)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,椭圆C上任意一点到椭圆两焦点的距离和为6.求椭圆C的方程;
(2)直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A、B.求实数k的取值范围.
(1)∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,椭圆C上任意一点到椭圆两焦点的距离和为6,
∴2a=6,
c
a
=
6
3
,解得a=3,c=
6

∴b2=a2-c2=3
故椭圆C的方程为
x2
9
+
y2
3
=1

(2)将直线l的方程y=kx+1代入双曲线C的方程2x2-y2=1后,整理得(k2-2)x2+2kx+2=0.
依题意,直线l与双曲线C右支交于不同两点,则
k2-2≠0,△=(2k)2-8(k2-2)>0,-
2k
k2-2
>0,
2
k2-2
>0
解得k的取值范围为-2<k<-
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网