题目内容
【题目】设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2 , a3+4构成等差数列.
(1)求数列{an}的通项公式.
(2)令bn=lna3n+1 , n=1,2,…,求数列{bn}的前n项和Tn .
【答案】
(1)解:由已知得
解得a2=2.
设数列{an}的公比为q,由a2=2,
可得 .
又S3=7,可知 ,
即2q2﹣5q+2=0,
解得
由题意得q>1,
∴q=2,
∴a1=1.故数列{an}的通项为an=2n﹣1
(2)解:由于bn=lna3n+1,n=1,2,
由(1)得a3n+1=23n,
∴bn=ln23n=3nln2,又bn+1﹣bn=3ln2,
∴{bn}是等差数列.
∴Tn=b1+b2++bn
=
=
= .
故
【解析】(1)由{an}是公比大于1的等比数列,S3=7,且a1+3,3a2 , a3+4构成等差数列,我们不难构造方程组,解方程组即可求出相关基本量,进而给出数列{an}的通项公式.(2)由bn=lna3n+1 , n=1,2,…,我们易给出数列{bn}的通项公式,分析后可得:数列{bn}是一个等差数列,代入等差数列前n项和公式即可求出Tn
【考点精析】解答此题的关键在于理解等比数列的通项公式(及其变式)的相关知识,掌握通项公式:,以及对数列的前n项和的理解,了解数列{an}的前n项和sn与通项an的关系.
【题目】已知 .
(1)请写出fn(x)的表达式(不需证明);
(2)设fn(x)的极小值点为Pn(xn , yn),求yn;
(3)设 ,gn(x)的最大值为a,fn(x)的最小值为b,求b﹣a的最小值.
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x与相应的生产能耗y的几组对照数据
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.(其中, ).