题目内容

【题目】已知ABC是△ABC的三个内角,向量m=(-1, ),n=(cosA,sinA),且m·n=1.

(1)求角A

(2)若=-3,求tanC.

【答案】(1) ;(2) .

【解析】试题分析:(1)由m·n=1,代入坐标用两角和与差的正弦公式化简,即可求出角A;(2)将已知条件用完全平方公式和平方差公式化简,可得=-3,分式上下同除以,解出,tanC=tan[π-(AB)],利用诱导公式和两角和与差的正切公式化简,把的值代入即可.

试题解析:

(1)∵m·n=1,

sinA-cosA=1,2(sinA·-cosA·)=1,

sin(A)=

0<A<π,- <A<

A.A.

(2)由题知=-3,

=-3

=-3

=-3,tanB=2.

∴tanC=tan[π-(AB)]

=-tan(AB)=-.

点睛:本题考查平面向量数量积的坐标运算,同角三角函数的基本关系和两角和与差的正切公式. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网