题目内容

【题目】一座圆拱桥,当水面在如图所示位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽多少米?

【答案】2

【解析】试题分析; 建立适当的直角坐标系,得到相关各点的坐标,通过设圆的半径,可得圆的方程,然后将点的坐标代入确定圆的方程,设当水面下降1米后可设 的坐标为 根据点在圆上,可求得 的值,从而得到问题的结果.

试题解析;以圆拱顶点为原点,以过圆拱顶点的竖直直线为y轴,建立如图所示的平面直角坐标系.

设圆心为C,水面所在弦的端点为AB,则由已知可得A(6,-2)

设圆的半径长为r,则C(0,-r),即圆的方程为x2(yr)2r2.将点A的坐标代入上述方程可得r10,所以圆的方程为x2(y10)2100.

当水面下降1米后,可设A′(x0,-3)(x00),代入x2(y10)2100,解得2x02,即当水面下降1米后,水面宽2米.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网