题目内容

【题目】椭圆C:(a>b>0)的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为,直线MB的斜率为,证明 为定值,并求出该定值.

【答案】(Ⅰ) (Ⅱ)见证明

【解析】

(Ⅰ)根据已知得到关于a,b,c的方程组,解方程组即得椭圆的标准方程;(Ⅱ)先考虑直线l的斜率不存在的情况,再考虑斜率存在的情况,直线l的方程与椭圆的标准方程联立得到韦达定理,再求出,化简即得其为定值.

(Ⅰ)将代入中,由可得

所以弦长为

故有,解得

所以椭圆的方程为:

(Ⅱ)若直线l的斜率不存在,即直线的方程为x=2,与椭圆只有一个交点,不符合题意。

设直线l的斜率为k,若k=0,直线l与椭圆只有一个交点,不符合题意,故k≠0.

所以直线l的方程为,即, 直线l的方程与椭圆的标准方程联立得:

消去y得:,

,则

,

代入上式,得

,命题得证.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网