题目内容
【题目】已知的角所对的边份别为,且
(1)求角的大小;
(2)若,求的周长的取值范围.
【答案】(1);(2).
【解析】
试题分析:(1)利用正弦定理、三角形内角和定理及同角三角函数关系,将条件化为
sinB=sin(A+C)=sinAcosC+cosAsinC,再利用两角和与差的三角函数公式化简,求得cosA=,从而确定角的大小;
(2)由题设利用正弦定理将的周长表示民关于角B的三角函数,然后利用三角函数的性质求周长的取值范围.
试题解析:解:(1)由acosC+c=b和正弦定理得,
sinAcosC+sinC=sinB,
又sinB=sin(A+C)=sinAcosC+cosAsinC,
∴sinC=cosAsinC,
∵sinC≠0,∴cosA=,
∵0<A<π,∴A=.
(2)由正弦定理得,b==sinB,c==sinC,
则l=a+b+c=1+ (sinB+sinC)
=1+ [sinB+sin(A+B)]
=1+2(sinB+cosB)=1+2sin(B+).
∵A=,∴B∈(0,),∴B+∈(,),
∴sin(B+)∈(,1],
∴△ABC的周长l的取值范围为(2,3].
练习册系列答案
相关题目
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程,其中, ;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)