题目内容

如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.

(1)证明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABDA1B1D1的体积.

(1)见解析   (2)1

解析(1)证明:由题设知,BB1DD1,
∴BB1D1D是平行四边形,
∴BD∥B1D1.
又BD平面CD1B1,
∴BD∥平面CD1B1.
∵A1D1B1C1BC,
∴A1BCD1是平行四边形,
∴A1B∥D1C.
又A1B平面CD1B1,
∴A1B∥平面CD1B1.
又∵BD∩A1B=B,
∴平面A1BD∥平面CD1B1.
(2)解:∵A1O⊥平面ABCD,
∴A1O是三棱柱ABDA1B1D1的高.
又∵AO=AC=1,AA1=,
∴A1O==1.
又∵S△ABD=××=1,
=S△ABD×A1O=1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网