题目内容
用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm,求圆台的母线长.
9cm
解析
在如图所示的几何体中,四边形为正方形,四边形为等腰梯形,,,,.(1)求证:平面;(2)求四面体的体积;(3)线段上是否存在点,使平面?请证明你的结论.
在△ABC中,∠BAC=90°,∠B=60°,AB=1,D为线段BC的中点,E、F为线段AC的三等分点(如图①).将△ABD沿着AD折起到△AB′D的位置,连结B′C(如图②).图①图②(1)若平面AB′D⊥平面ADC,求三棱锥B′-ADC的体积;(2)记线段B′C的中点为H,平面B′ED与平面HFD的交线为l,求证:HF∥l;(3)求证:AD⊥B′E.
如图四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.
如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABDA1B1D1的体积.
如图,AA1,BB1为圆柱OO1的母线,BC是底面圆O的直径,D,E分别是AA1,CB1的中点,DE⊥面CBB1.(1)证明:DE∥面ABC;(2)求四棱锥CABB1A1与圆柱OO1的体积比.
如图,在三棱柱中,四边形为菱形,,四边形为矩形,若,,.(1)求证:平面;(2)求证:面;(3)求三棱锥的体积.
在四棱锥P -ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.(1)求四棱锥的体积.(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.
有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.