题目内容
【题目】已知圆C:x2+y2﹣4x=0.
(1)直线l的方程为,直线l交圆C于A、B两点,求弦长|AB|的值;
(2)从圆C外一点P(4,4)引圆C的切线,求此切线方程.
【答案】(1);(2) x=4或3x﹣4y+4=0.
【解析】
(1)计算圆心到直线的距离为,再利用勾股定理得到答案.
(2)考虑斜率存在和不存在两种情况,利用原点到直线的距离等于半径得到答案.
(1)化圆C:x2+y2﹣4x=0为:(x﹣2)2+y2=4,知圆心(2,0)为半径为2,
故圆心到直线的距离,∴;
(2)当斜率不存在时,过P(4,4)的直线是x=4,显然是圆的切线;
当斜率存在时,设直线方程为y﹣4=k(x﹣4).由,解得.
此时切线方程为3x﹣4y+4=0.
综上所述:切线方程为x=4或3x﹣4y+4=0.
练习册系列答案
相关题目
【题目】某高校在2017年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下:
组号 | 分组 | 频率 |
第1组 | [160,165) | 0.05 |
第2组 | [165,170) | 0.35 |
第3组 | [170,175) | ① |
第4组 | [175,180) | 0.20 |
第5组 | [180,185] | 0.10 |
(1)请先求出频率分布表中①处应填写的数据,并完成如图所示的频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3,4,5组每组各应抽取多少名学生进入第二轮面试.
(3)根据直方图估计这次自主招生考试笔试成绩的平均数和中位数;