题目内容
【题目】在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分)。若直角三角形中较小的锐角为a。现向大正方形区城内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为,则_____________。
【答案】
【解析】
设正方形边长为,可得出每个直角三角形的面积为,由几何概型可得出四个直角三角形的面积之和为,可求出,由得出并得出的值,再利用降幂公式可求出的值.
设正方形边长为,则直角三角形的两条直角边分别为和,则每个直角三角形的面积为,由题意知,阴影部分正方形的面积为,
所以,四个直角三角形的面积和为,即,
由于是较小的锐角,则,,所以,,
因此,,故答案为:.
【题目】为了缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的基本规则是:①“盲拍”,即所有参与竞拍的人都要网络报价一次,每个人不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞拍人的出价从高到低分配名额.某人拟参加年月份的车牌竞拍,他为了预测最低成交价,根据竞拍网站的数据,统计了最近个月参与竞拍的人数(见下表):
月份 | |||||
月份编号 | |||||
竞拍人数(万人) |
(1)由收集数据的散点图发现,可用线性回归模型拟合竞拍人数(万人)与月份编号之间的相关关系.请用最小二乘法求关于的线性回归方程:,并预测年月份参与竞拍的人数.
(2)某市场调研机构从拟参加年月份车牌竞拍人员中,随机抽取了人,对他们的拟报价价格进行了调查,得到如下频数分布表和频率分布直方图:
报价区间(万元) | |||||||
频数 |
(i)求、的值及这位竞拍人员中报价大于万元的概率;
(ii)若年月份车牌配额数量为,假设竞拍报价在各区间分布是均匀的,请你根据以上抽样的数据信息,预测(需说明理由)竞拍的最低成交价.
参考公式及数据:①回归方程,其中,;
②,.