题目内容

【题目】数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC的顶点A20),B04),且AC=BC,则△ABC的欧拉线的方程为( )

A.x+2y+3=0B.2x+y+3=0C.x﹣2y+3=0D.2x﹣y+3=0

【答案】C

【解析】

试题由于AC=BC,可得:△ABC的外心、重心、垂心都位于线段AB的垂直平分线上,求出线段AB的垂直平分线,即可得出△ABC的欧拉线的方程.

解:线段AB的中点为M12),kAB=﹣2

线段AB的垂直平分线为:y﹣2=x﹣1),即x﹣2y+3=0

∵AC=BC

∴△ABC的外心、重心、垂心都位于线段AB的垂直平分线上,

因此△ABC的欧拉线的方程为:x﹣2y+3=0

故选C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网