ÌâÄ¿ÄÚÈÝ
7£®Éèx¡ÊR£¬¼Ç²»³¬¹ýxµÄ×î´óÕûÊýΪ[x]£¬Èç[2.5]=2£¬[-2.5]=-3£¬Áî{x}=x-[x]£¬Ôò{$\frac{\sqrt{5}+1}{2}$}£¬[$\frac{\sqrt{5}+1}{2}$]£¬$\frac{\sqrt{5}+1}{2}$£¬Èý¸öÊý¹¹³ÉµÄÊýÁУ¨¡¡¡¡£©A£® | ÊǵȱÈÊýÁе«²»ÊǵȲîÊýÁÐ | B£® | ÊǵȲîÊýÁе«²»ÊǵȱÈÊýÁÐ | ||
C£® | ¼ÈÊǵȲîÊýÁÐÓÖÊǵȱÈÊýÁÐ | D£® | ¼È²»ÊǵȲîÊýÁÐÒ²²»ÊǵȱÈÊýÁÐ |
·ÖÎö ¸ù¾Ý¶¨Òå·Ö±ðÇó³ö[$\frac{\sqrt{5}+1}{2}$]=1£¬{$\frac{\sqrt{5}+1}{2}$}=$\frac{\sqrt{5}-1}{2}$£¬È»ºó½áºÏµÈ±ÈÊýÁеĶ¨Òå½øÐÐÅжϼ´¿ÉµÃµ½½áÂÛ£®
½â´ð ½â£ºÓÉÌâÒâµÃ[$\frac{\sqrt{5}+1}{2}$]=1£¬{$\frac{\sqrt{5}+1}{2}$}=$\frac{\sqrt{5}+1}{2}$-[$\frac{\sqrt{5}+1}{2}$]=$\frac{\sqrt{5}+1}{2}$-1=$\frac{\sqrt{5}-1}{2}$£¬
¡ß$\frac{\sqrt{5}+1}{2}$¡Á$\frac{\sqrt{5}-1}{2}$=$\frac{5-1}{4}=\frac{4}{4}=1$=12£¬
¡à$\frac{\sqrt{5}-1}{2}$£¬1£¬$\frac{\sqrt{5}+1}{2}$³ÉµÈ±ÈÊýÁУ¬²»³ÉµÈ²îÊýÁУ¬
¹ÊÑ¡£ºA
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÈ±ÈÊýÁеÄÅжϣ¬¸ù¾Ý¶¨Ò彫Ìõ¼þ½øÐл¯¼òÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®Èô£¨3x-1£©7=a7x7+a6x6+¡+a1x+a0£¬Ôòa1+a3+a5+a7=£¨¡¡¡¡£©
A£® | 26-213 | B£® | 26+213 | C£® | 27-214 | D£® | 27+214 |
15£®ÔÚÔ²x2+y2-4x-4y-2=0ÄÚ£¬¹ýµãE£¨0£¬1£©µÄ×ÏÒºÍ×î¶ÌÏÒ·Ö±ðΪACºÍBD£¬ÔòËıßÐÎABCDµÄÃæ»ýΪ£¨¡¡¡¡£©
A£® | 5$\sqrt{2}$ | B£® | 10$\sqrt{2}$ | C£® | 15$\sqrt{2}$ | D£® | 20$\sqrt{2}$ |
12£®ÒÑÖª¹ØÓÚxµÄº¯Êýf£¨x£©=x2+2mlog2£¨x2+2£©+m2-3£¬£¨m£¾0£©ÓÐΨһµÄÁãµã£¬ÇÒÕýʵÊýa¡¢bÂú×ãa2+b2=m£¬ÇÒa3+b3+1=t£¨a+b+1£©3£¬ÔòtµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£® | $\frac{{3\sqrt{2}-4}}{2}$ | B£® | $\frac{{3\sqrt{3}-4}}{2}$ | C£® | $\frac{{2\sqrt{2}-4}}{2}$ | D£® | $\frac{{2\sqrt{3}-4}}{2}$ |
17£®ÈôÒ»¸ö¼¸ºÎÌåµÄÕýÊÓͼºÍ²àÊÓͼ¶¼ÊDZ߳¤Îª2µÄÕý·½ÐΣ¬¸©ÊÓͼÊÇÒ»¸öÔ²£¬ÔòÕâ¸ö¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£® | 2¦Ð | B£® | 4¦Ð | C£® | 8¦Ð | D£® | $\frac{8¦Ð}{3}$ |