题目内容
【题目】已知数列满足:对任意,都有.
(1)若,求的值;
(2)若是等比数列,求的通项公式;
(3)设,,求证:若成等差数列,则也成等差数列.
【答案】(1)3;(2);(3)见解析.
【解析】
(1)依据下标的关系,有,,两式相加,即可求出;(2)依据等比数列的通项公式知,求出首项和公比即可。利用关系式,列出方程,可以解出首项和公比;(3)利用等差数列的定义,即可证出。
(1)因为对任意,都有,所以,,两式相加,,解得;
(2)设等比数列的首项为,公比为,因为对任意,都有,
所以有,解得,又 ,
即有,化简得,,即,
或,因为,化简得,所以
故。
(3)因为对任意,都有,所以有
,成等差数列,设公差为,
,, ,
,由等差数列的定义知,
也成等差数列。
练习册系列答案
相关题目