题目内容
在公差不为0的等差数列{an}中,a4=10,且a3,a6,a10成等比数列.
(Ⅰ)求an的通项公式;
(Ⅱ)设bn=2an(n∈N*),求数列{bn}的前n项和公式.
(Ⅰ)求an的通项公式;
(Ⅱ)设bn=2an(n∈N*),求数列{bn}的前n项和公式.
(I)令公差为d,由a4=10得a3=10-d,a6=10+2d,a10=10+6d
∵a3,a6,a10成等比数列
∴故有(10+2d)2=(10-d)(10+6d)
∴d=1
∴an=a4+(n-4)d=n+6
(II)由bn=2an=bn=2n+6
∴b1=21+6=128,q=
=
=2
∴故其前n项和为Sn=
=2n+7-128
∵a3,a6,a10成等比数列
∴故有(10+2d)2=(10-d)(10+6d)
∴d=1
∴an=a4+(n-4)d=n+6
(II)由bn=2an=bn=2n+6
∴b1=21+6=128,q=
bn+1 |
bn |
2n+7 |
2n+6 |
∴故其前n项和为Sn=
128×(1-2n) |
1-2 |
练习册系列答案
相关题目