题目内容
【题目】在平面四边形中,、分、所成的比为,即,则有:.
(1)拓展到空间,写出空间四边形类似的命题,并加以证明;
(2)在长方体中,,,,、分别为、的中点,利用上述(1)的结论求线段的长度;
(3)在所有棱长均为平行六面体中,(为锐角定值),、分、所成的比为,求的长度.(用,,表示)
【答案】(1)命题同题干,证明见解析;(2);(3)
【解析】
(1)由条件可得,利用向量的线性运算证明即可;
(2)由(1)的结论可得,两边同时平方计算可得结果;
(3)由(1)的结论可得,两边同时平方计算可得结果.
(1)在空间四边形中,、分、所成的比为,即,则有:.
证明:
;
(2)由(1)的结论可得,
,
;
(3)如图:
与所成的角为,
又由(1)的结论可得,
,
.
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加一次抽奖.随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商场对前5天抽奖活动的人数进行统计,y表示第x天参加抽奖活动的人数,得到统计表如下:
x | 1 | 2 | 3 | 4 | 5 |
y | 50 | 60 | 70 | 80 | 100 |
经过进一步统计分析,发现y与x具有线性相关关系.
(1)若从这5天随机抽取两天,求至少有1天参加抽奖人数超过70的概率;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并估计该活动持续7天,共有多少名顾客参加抽奖?
参考公式及数据:.
【题目】某小区所有263户家庭人口数分组表示如下:
家庭人口数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
家庭数 | 20 | 29 | 48 | 50 | 46 | 36 | 19 | 8 | 4 | 3 |
(1)若将上述家庭人口数的263个数据分布记作,平均值记作,写出人口数方差的计算公式(只要计算公式,不必计算结果);
(2)写出他们家庭人口数的中位数(直接给出结果即可);
(3)计算家庭人口数的平均数与标准差.(写出公式,再利用计算器计算,精确到0.01)