题目内容
【题目】已知函数,.
(1)若,求的最大值;
(2)当时,求证:.
【答案】(1) (2)见解析
【解析】分析:(1)给定区间求最值需先求导判出在相应区间上的单调性;
(2)构造新函数,运用放缩进行处理。先证,又由,,所以。
详解:(1)解:当时,,
由,得,所以时,;时,,
因此的单调递减区间为,单调递增区间为,
的最大值为 .
(2)证明:先证,
令,
则 ,
由,与的图象易知,存在,使得,
故时,;时,,
所以的单调递减区间为,单调递增区间为,
所以的最大值为,
而,.
又由,,所以,
当且仅当,取“=”成立,即.
点晴:导数是做题的工具,在解决问题时,一般首先要对题干的转化,带着目标做下手,一般都是转化成最值的问题,然后最值的问题都是利用单调性去解决
【题目】按照我国《机动车交通事故责任强制保险条例》规定,交强险是车主必须为机动车购买的险种,若普通7座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是保费浮动机制,保费与上一、二、三个年度车辆发生道路交通事故的情况相关联,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
投保类型 | 浮动因素 | 浮动比率 |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了研究某一品牌普通7座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车在下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 20 | 10 | 10 | 20 | 15 | 5 |
以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)某家庭有一辆该品牌车且车龄刚满三年,记为该车在第四年续保时的费用,求的分布列;
(2)某销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车.
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至少有2辆事故车的概率;
②假设购进一辆事故车亏损4000元,一辆非事故盈利8000元,若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求其获得利润的期望值.