题目内容
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加抽奖,抽奖有两种方案可供选择. 方案一:从装有4个红球和2个白球的不透明箱中,随机摸出2个球,若摸出的2个球都是红球则中奖,否则不中奖;
方案二:掷2颗骰子,如果出现的点数至少有一个为4则中奖,否则不中奖.(注:骰子(或球)的大小、形状、质地均相同)
(Ⅰ)有顾客认为,在方案一种,箱子中的红球个数比白球个数多,所以中奖的概率大于 .你认为正确吗?请说明理由;
(Ⅱ)如果是你参加抽奖,你会选择哪种方案?请说明理由.
【答案】解:(Ⅰ)将4个红球分别记为a1,a2,a3,a4,2个白球分别记为b1,b2,
则从箱中随机摸出2个球有以下结果:
{a1,a2},{a1,a3},{a1,a4},{a1,b1},{a1,b2},{a2,a3},
{a2,a4},{a2,b1},{a2,b2},{a3,a4},{a3,b1},{a3,b2},
{a4,b1},{a4,b2},{b1,b2},总共15种,
其中2个都是红球的有{a1,a2},{a1,a3},{a1,a4},{a2,a3},{a2,a4},{a3,a4}共6 种,
所以方案一中奖的概率为 ,
所以顾客的想法是错误的.
(Ⅱ)抛掷2颗骰子,所有基本事件共有36种,
其中出现的点数至少有一个4的基本事件有(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(4,1),(4,2),(4,3),(4,5),(4,6)共11种,
所以方案二中奖的概率为 ,
所以应该选择方案一.
【解析】(Ⅰ)将4个红球分别记为a1,a2,a3,a4,2个白球分别记为b1,b2,利用列举法求出方案一中奖的概率,由此得到顾客的想法是错误的.(Ⅱ)抛掷2颗骰子,所有基本事件共有36种,利用列法求出出现的点数至少有一个4的基本事件种数,从而求出方案二中奖的概率,从而得到应该选择方案一.