题目内容
【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为 , ,f3(x)=x,f4(x)=log2(x+1),有以下结论: ①当x>1时,甲走在最前面;
②当x>1时,乙走在最前面;
③当0<x<1时,丁走在最前面,当x>1时,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲.
其中,正确结论的序号为(把正确结论的序号都填上,多填或少填均不得分).
【答案】③④⑤
【解析】解:路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系是:
, ,f3(x)=x,f4(x)=log2(x+1),
它们相应的函数模型分别是指数型函数,二次函数,一次函数,和对数型函数模型.
当x=2时,f1(2)=3,f2(2)=4,∴命题①不正确;
当x=4时,f1(5)=31,f2(5)=25,∴命题②不正确;
根据四种函数的变化特点,对数型函数的变化是先快后慢,当x=1时甲、乙、丙、丁四个物体又重合,从而可知当0<x<1时,丁走在最前面,当x>1时,丁走在最后面,
命题③正确;
指数函数变化是先慢后快,当运动的时间足够长,最前面的动物一定是按照指数型函数运动的物体,即一定是甲物体,∴命题⑤正确.
结合对数型和指数型函数的图象变化情况,可知丙不可能走在最前面,也不可能走在最后面,命题④正确.
所以答案是:③④⑤.
练习册系列答案
相关题目