题目内容
【题目】如图,已知Rt△ABC,∠ABC=90°,D是AC的中点,⊙O经过A,B,D三点,CB的延长线交⊙O于点E,过点E作⊙O的切线,交AC的延长线于点F.在满足上述条件的情况下,当∠CAB的大小变化时,图形也随着改变,但在这个变化过程中,有些线段总保持着相等的关系.
(1)连接图中已标明字母的某两点,得到一条新线段与线段CE相等,并说明理由;
(2)若CF=CD,求sin F的值.
【答案】(1)见解析;(2).
【解析】试题分析:
(1)AE=CE.理由如下:连接AE,则AE=CE.结合圆的直径可知∠ADE=90°,则AE=CE;
(2)设CF=x,则FA=3x,FD=2x,AD=x.计算可得FE=,则.
试题解析:
(1)连接AE,则AE=CE.
∵∠ABE=90°,
∴AE为直径,连接DE.
则∠ADE=90°,
又AD=CD,
∴AE=CE.
(2)设CF=x,
则FA=3x,FD=2x,AD=x.
∵FE为⊙O的切线,
∴AE⊥EF.
∴DE2=AD·DF=2x2,
即DE=x.
FE2=FD·FA=2x·3x=6x2,
即FE=x.
∴sinF===.
【题目】电视传媒公司为了了解某地区电视观众对某体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X)
P( K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |