题目内容
【题目】已知在平面直角坐标系内,点 在曲线:,(为参数,)上运动,以为极轴建立极坐标系.直线的极坐标方程为.
(Ⅰ)写出曲线的标准方程和直线的直角坐标方程;
(Ⅱ)若直线与曲线相交于两点,点在曲线上移动,求面积的最大值.
【答案】(Ⅰ)曲线的标准方程:;直线的直角坐标方程为:
(Ⅱ)
【解析】
试题分析:(Ⅰ)对于曲线,理平方关系消去参数即可;对于极坐标方程利用三角函数的和角公式后再化成直角坐标方程,再利用消去参数得到直线的直角坐标方程.
(Ⅱ)欲求面积的最大值,由于一定,故只要求边上的高最大即可,根据平面几何的特征,当点在过圆心且垂直于的直线上时,距离最远,据此求面积的最大值即可.
试题解析:(Ⅰ)消参数得曲线的标准方程:.由题得:,即直线的直角坐标方程为:.
(Ⅱ)圆心到的距离为,则点到的最大距离为,,∴.
练习册系列答案
相关题目
【题目】为了解心肺疾病是否与年龄相关,现随机抽取80名市民,得到数据如下表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
大于40岁 | 16 | ||
小于或等于40岁 | 12 | ||
合计 | 80 |
已知在全部的80人中随机抽取1人,抽到不患心肺疾病的概率为
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d)
(1)请将2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.025的前提下认为患心肺疾病与年龄有关?