题目内容
【题目】如图所示,在正三棱柱ABCA1B1C1中,AB=2,AA1=2,由顶点B沿棱柱侧面(经过棱AA1)到达顶点C1,与AA1的交点记为M.求:
(1)三棱柱侧面展开图的对角线长;
(2)从B经M到C1的最短路线长及此时的值.
【答案】(1) .
(2)1.
【解析】
(1)正三棱柱ABC﹣A1B1C1的侧面展开图是长为6,宽为2的矩形,直接可以求出对角线长;
(2)将侧面AA1B1B绕棱AA1旋转120°使其与侧面AA1C1C在同一平面上,点B运动到点D的位置,连接DC1交AA1于M,则DC1就是由顶点B沿棱柱侧面经过棱AA1到顶点C1的最短路线,求出DC1和的值即可;
沿侧棱BB1将正三棱柱的侧面展开,得到一个矩形BB1B′1B′(如下图).
(1)矩形BB1B′1B′的长BB′=6,宽BB1=2.所以三棱柱侧面展开图的对角线长为=2.
(2) 如图,将侧面AA1B1B绕棱AA1旋转120°使其与侧面AA1C1C在同一平面上,点B运动到点D的位置,连接DC1交AA1于M,则DC1就是由顶点B沿棱柱侧面经过棱AA1到顶点C1的最短路线,其长为∵△DMA≌△C1MA1,∴AM=A1M,故
练习册系列答案
相关题目