题目内容
【题目】已知数列{an}中,点(an,an+1)在直线y=x+2上,且首项a1=1.
(1)求数列{an}的通项公式;
(2)数列{an}的前n项和为Sn,等比数列{bn}中,b1=a1,b2=a2,数列{bn}的前n项和为Tn,请写出适合条件Tn≤Sn的所有n的值.
【答案】(1)an=2n-1(2)n=1或2
【解析】试题分析:(1)由点(an,an+1)在直线y=x+2上,且首项a1=1.可得an+1﹣an=2,利用等差数列的通项公式即可得出.
(2)数列{an}是的前n项和Sn=n2.等比数列{bn}中,b1=a1=1,b2=a2=3,利用等比数列的求和公式可得{bn}的前n项和Tn,代入Tn≤Sn,即可得出.
试题解析:
(1)根据已知a1=1,an+1=an+2,
即an+1-an=2=d,
所以数列{an}是首项为1,公差为2的等差数列,
an=a1+(n-1)d=2n-1.
(2)数列{an}的前n项和Sn=n2.
等比数列{bn}中,b1=a1=1,b2=a2=3,
所以q=3,bn=3n-1.
数列{bn}的前n项和Tn==.
Tn≤Sn即≤n2,又n∈N*,
所以n=1或2.
【题目】某市A,B,C,D四所中学报名参加某高校2015年自主招生考试的学生人数如下表所示:
中学 | A | B | C | D |
人数 | 40 | 30 | 10 | 20 |
该市教委为了解参加考试的学生的学习状况,采用分层抽样的方法从四所中学报名参加考试的学生中随机抽取50名参加问卷调查.则A,B,C,D四所中学抽取的学生人数分别为( )
A.15,20,10,5B.15,20,5,10
C.20,15,10,5D.20,15,5,10
【题目】某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):
空气质量指数 | ||||||
空气质量等级 | 1级优 | 2级良 | 3级轻度污染 | 4级中度污染 | 5级重度污染 | 6级严重污染 |
该社团将该校区在2018年11月中10天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.
(Ⅰ)以这10天的空气质量指数监测数据作为估计2018年11月的空气质量情况,则2018年11月中有多少天的空气质量达到优良?
(Ⅱ)已知空气质量等级为1级时不需要净化空气,空气质量等级为2级时每天需净化空气的费用为1000元,空气质量等量等级为3级时每天需净化空气的费用为2000元.若从这10天样本中空气质量为1级、2级、3级的天数中任意抽取两天,求这两天的净化空气总费用为3000元的概率.